* Emmanuel Trélat (UPMC) - MAP5-UMR 8145

Emmanuel Trélat (UPMC)

Optimisation du domaine pour observer ou contrôler des modèles EDP

vendredi 8 avril 2016, 11h00 - 12h00

Salle de réunion, espace Turing


On étudie le problème d’optimiser la forme et le placement de capteurs ou de contrôleurs, dans des systèmes d’évolution modélisés par des EDP. On considère notamment les modèles classiques des ondes, Schrödinger ou chaleur, sur un domaine arbitraire Omega, en toute dimension d’espace, et avec des conditions frontières appropriées (s’il y a une frontière).
Ce type de problème apparaît fréquemment en pratique dans des applications où l’on chercher, par exemple, à maximiser la qualité de reconstruction de la solution, en se servant d’observations partielles. Par exemple: quelle est la forme optimale, et la localisation idéale dans Omega, d’un thermomètre de mesure de Lebesgue donnée ?
Du point de vue mathématique, il s’agit d’un problème inverse.
Tout d’abord, par des considérations probabilistes, on montre qu’il est pertinent de modéliser ce problème en maximisant ce qu’on appelle la « constante d’observabilité randomisée », parmi tous les sous-domaines de Omega de mesure de Lebesgue donnée. Cela revient à maximiser un infimum parmi tous les modes possibles de certaines quantités spectrales liées aux fonctions propres du Laplacien. L’analyse spectrale de ce problème s’avère être en lien étroit avec la théorie du chaos quantique, plus précisément, avec les propriétés d’ergodicité quantique du domaine.
Il s’agit d’une série de travaux avec Yannick Privat (Paris 6) et Enrique Zuazua (Bilbao).