Charlie Hérent

Charlie Hérent

Théorème de Matsumoto-Yor à temps discret dans $SL_2$

Quand

28 juin 2024    
15h30 - 16h30

Salle du Conseil, Espace Turing
45 rue des Saints-Pères, Paris, 75006

Type d’évènement

On étudie une marche aléatoire dans le sous-groupe des matrices triangulaires inférieures de $SL_2$. On montre que l’analogue discret du processus de Matsumoto-Yor est une chaîne de Markov si et seulement si les accroissements sont distribués relativement à une loi inverse-gaussienne généralisée (GIG). Cela donne une nouvelle caractérisation de ces lois. Par ailleurs, on établit un théorème de reconstruction pour la partie diagonale de la marche relativement au processus de plus haut poids. Enfin, on étudiera la convergence de la marche vers son analogue continu.

Ivan Hasenohr

Organisateur GTE

Vous aimerez aussi...