Erwan Scornet (LPSM, Sorbonne Université)

Erwan Scornet (LPSM, Sorbonne Université)

Going beyond the fear of emptyness to gain consistency

Quand

10 janvier 2025    
9h30 - 10h30

Salle du Conseil, Espace Turing
45 rue des Saints-Pères, Paris, 75006

Type d’évènement

Going beyond the fear of emptyness to gain consistency.
 
Missing data are ubiquitous in many real-world datasets as they naturally arise from gathering information from various sources in different format. Most statistical analyses have focused on estimation in parametric models despite missing values. Howeveraccurate estimation is not sufficient to make predictions on a test set that contains missing data: a manner to handle missing entries must be designed. In this talkwe will analyze two different approaches to predict in presence of missing data: imputation and pattern-by-pattern strategiesWe will show the consistency of such approaches and study their performances in the context of linear models.

Related papers:
– On the consistency of supervised learning with missing values 
https://arxiv.org/abs/2405.09196,
– What is a good imputation to predict with missing values 
https://arxiv.org/abs/2106.00311
– 
Near-optimal rate of consistency for linear models with missing values https://proceedings.mlr.press/v162/ayme22a/ayme22a.pdf
– Naive imputation implicitly regularizes high-dimensional linear models 
https://arxiv.org/abs/2301.13585
– Harnessing pattern-by-pattern linear classifiers for prediction with missing data 
https://arxiv.org/pdf/2405.09196

Vous aimerez aussi...